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Abstract We expand on the work of Hosoya to describe a generalization of contin-
ued fractions called “tree expressions.” Each rooted tree will be shown to correspond
to a unique tree expression which can be evaluated as a rational number (not neces-
sarily in lowest terms) whose numerator is equal to the Hosoya index of the entire tree
and whose denominator is equal to the tree with the root deleted. In the development,
we use Z(G) to define a natural candidate ζ(G, v) for a “vertex topological index”
which is a value applied to each vertex of a graph, rather than a value assigned to
the graph overall. Finally, we generalize the notion of tree expression to “labeled tree
expressions” that correspond to labeled trees and show that such expressions can be
evaluated as quotients of determinants of matrices that resemble adjacency matrices.

Keywords Hosoya index · Topological index · Z-index

1 Introduction

In 1971, Hosoya inaugurated the study of topological descriptors of graphs in
connection with chemical properties. In his initial work, he demonstrated that the
number of ways to partition the set of atoms of an alkane into singletons or bonded
pairs—a “matching” of the underlying graph in more modern terminology—is highly
correlated to the boiling point of the alkane [3]. Hosoya dubbed the number of match-
ings Z(G) of the graph G its “topological index” Among Hosoya’s early observations
is the well-known fact that Z(Pn) = Fn+1, the (n + 1)st Fibonacci number [4].
Hosoya was able to generalize this to computing Z(G) where G is a caterpillar by
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using continuants of continued fractions [5–7]. Hosoya and Gutman’s most recent
paper [8] gives details on relating Z(G) of an underlying caterpillar to the number K
of Kekulé structures. Hosoya and Gutman’s paper includes an extensive list of other
recent applications of Z(G) which we include here as well [2,9–12]. We also note
that Hosoya’s use of continuants to enumerate Z(G) for caterpillars exactly mirrors
tilings of paths by dominos and stacks of squares detailed by Benjamin and Quinn [1].
Insights such as these that connect continued fractions to enumeration problems have
led to the results contained in this paper.

For our note, we begin with the observation (made by Hosoya himself and many
others) that Hosoya’s index can be computed recursively on a graph G by letting u by
any vertex and

Z(G) = Z(G − u) +
∑

v∈N (u)

Z((G − u) − v) (1)

where N (u) is the set of vertices adjacent to u. Of course to supply initial conditions
for the recurrence, we have Z(G) = 1 if G is a graph with no edges; this is consistent
with the definition of Z as the number of matchings of G. We then perform the simple
step of dividing both sides of Eq. 1 by Z(G − u), obtaining

Z(G)

Z(G − u)
= 1 +

∑

v∈N (u)

Z((G − u) − v)

Z(G − u)
.

We define the “vertex topological index”

ζ(G, v) = Z(G)

Z(G − u)

and obtain at once a recurrence for ζ :

ζ(G, u) = 1 +
∑

v∈N (u)

1

ζ(G − u, v)
(2)

with initial condition ζ(G, u) = 1 if u has no neighbors in G.
Hosoya [8] observes that if G has several components C1, C2, . . . , Ck then

Z(G) = Z(C1)Z(C2) · · · Z(Ck). (3)

This is easy to see as the matchings are independent among the components. From
this, we see that if C1 is the component that contains u, then

ζ(G, u) = Z(G)

Z(G − u)

= Z(C1)Z(C2) · · · Z(Ck)

Z(C1 − u)Z(C2) · · · Z(Ck)
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= Z(C1)

Z(C1 − u)

= ζ(C1, u). (4)

2 Ordinary tree expressions

We now restrict our attention to the case where T is a tree with root r . Letting
r1, r2, . . . , rk be the neighbors of r , by deleting r from T , we would obtain a for-
est each of whose components would be a rooted tree Ti with root ri . At once, by
applying Eqs. 2 and 4 in this situation, we have

Theorem 1 Given a tree T with root r as well as Ti and ri as defined above,

ζ(T, r) = 1 +
∑

i

1

ζ(Ti , ri )
. (5)

The initial condition for this recurrence is the single-vertex tree T = r and we
already have ζ(r, r) = 1. Alternatively, we could note that r would have no neighbors
and the sum in Eq. 4 would be empty.

Any rooted tree (T, r) can now be associated with a “tree expression” τ(T, r) as
generated by the conclusion of Theorem 1. For instance, the tree expression for a
five-vertex path P5 rooted at the central vertex v3 would be

τ(P5, v3) = 1 + 1

1 + 1
1

+ 1

1 + 1
1

.

More formally, we define a “tree expression” τ and associated rooted tree by the
following recursive recipe:

1. The value 1 is a tree expression associated with the single-vertex tree, i.e.,
τ(r, r) = 1.

2. If τi , 1 ≤ i ≤ k are tree expressions then so is τ = 1 + ∑k
i=1

1
τi

. Given that
we have associated each rooted tree (Ti , ri ) with τi , we associate the rooted tree
(T, r) with τ.

We will use the notation τ(T, r) to represent the tree expression associated with the
rooted tree (T, r). Armed with our definition and Theorem 1, we immediately have

Corollary 1 Given a rooted tree (T, r), τ(T, r) = ζ(T, r).

We would like to conclude that the numerator of τ = τ(T, r) yields Z(T ), but it’s
entirely possible that we do not obtain this value if τ is reduced to lowest terms. For
instance, if we calculate τ(P5, v3) we obtain the value 2 which does not convey the
true value of Z(P5) = 8 or Z(P5 − v3) = 4. On the other hand, we can circumvent
this difficulty simply by not reducing to lowest terms at any time, as we show in the
next theorem.
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Theorem 2 If (T, r) is a rooted tree with rooted trees (Ti , ri ) defined as before and
if each τ(Ti , ri ) = ai/bi has been evaluated so that ai = Z(Ti ) and bi = Z(Ti − ri )

then evaluating τ(T, r) = a/b using the “product common denominator” as opposed
to the lowest common denominator yields a = Z(T ) and b = Z(T − r).

Proof We proceed by (strong) mathematical induction on the number of applications
of Eq. 5 necessary to complete the evaluation of ζ(T, r). If this number is zero, then
there are no components at all to T − r , i.e., T = r is a single vertex. But then
τ(T, r) = 1 = 1/1 and Z(T ) = 1 and Z(T −r) = 1 which verifies the basis step. For
the inductive step, we assume ai = Z(Ti ) and bi = Z(Ti − ri ) as in the hypothesis.
Now, when faced with evaluating τ(T, r) = a/b, we have

a

b
= 1 +

k∑

i=1

1

τ(Ti , ri )

= 1 +
k∑

i=1

bi

ai

= a1a2a3 · · · ak + b1a2a3 · · · ak + a1b2a3 · · · ak + · · · a1a2a3 · · · bk

a1a2a3 · · · ak

We now observe that

b = a1a2 · · · ak

= Z(T1)Z(T2) · · · Z(Tk)

= Z(T − r)

which follows from Eq. 3. Finally, we have from Corollary 2 that

a

b
= ζ(T, r) = Z(T )

Z(T − r)

which, together with b = Z(T − r), implies a = Z(T ) as desired. ��

We can see this in action in our example

τ(P5, v3) = 1 + 1

1 + 1
1

+ 1

1 + 1
1

= 1 + 1

2
+ 1

2

= 4

4
+ 2

4
+ 2

4
= 8

4
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Fig. 1 The rooted graph (T, v)

produced from the leading
1s of τ

We have seen how to go from rooted trees to tree expressions. The reverse direction
of constructing a tree from a given tree expression has an intriguing graphical inter-
pretation. Suppose we have a tree expression τ = 1 + ∑

i
1
τi

. The initial “1” in the

expression 1 + ∑
i

1
τi

will be called the “leading 1”; each of the τi expressions will
in turn have leading 1s. We construct the rooted tree (T, r) recursively. If τ = 1, we
declare T to be the single vertex r . Otherwise, we assume that each tree expression τi

has led to the construction of the rooted tree (Ti , ri ). The leading 1 of τ is declared
to be the root r and we join r to each of the vertices ri , forming the tree T . The
construction of (T, r) from τ is precisely the “unraveling” of the construction of τ

from (T, r) and so we have a one-to-one correspondence between rooted trees and tree
expressions.

One means of picturing the construction of (T, r) from τ is simply to circle all of
the leading 1s and then joining any leading 1 to the leading 1s of expressions at the
‘next level under the same fraction bar.’ This is demonstrated in Fig. 1.

3 Labeled tree expressions

We can generalize tree expressions to be applied to trees whose vertices are assigned
numerical labels by replacing the 1s that appear in denominators with the labels. More
specifically, suppose (T, v1) is a rooted tree with vertices v0, v1, . . . , vn and vertex
i has label xi . We then define its labeled tree expression λ(T, v0) by the recursive
recipe

1. If the vertex set of T is {v0}, then λ(T, v0) = x0.
2. If the root is adjacent to vertices vi1 , vi2 , . . . , vik and that C j is the component of

T − v0 that contains vi j , then λ(T, v0) = x0 + ∑
j 1/λ(C j , vi j ).

In the case of a path P = v0v1 . . . vn rooted at v0, we obtain as its labeled tree
expression the continued fraction

λ(P, v0) = x0 + 1

x1 + 1

x2 + 1

. . .

. . .

xn−1 + 1

xn

.
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Hosoya and Gutman [8] point out that

λ(P, v0) = det M(x0, x1, x2, . . . , xn)

det M(x1, x2, . . . , xn)

where

M(d1, d2, d3, . . . , dk) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 1
−1 d2 1

−1 d3 1
−1 d4

. . .

dk−1 1
−1 dk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

denotes the k × k tridiagonal matrix whose diagonal entries are d1, . . . , dk , whose
entries just above the diagonal are all 1 and whose entries just below the diagonal are
all −1.

We show that in fact this observation can be generalized to labeled tree expressions.
If G is a labeled graph where vertex vr is assigned label xr , we define the matrix B(G)

by the formula

B(G)i j =

⎧
⎪⎪⎨

⎪⎪⎩

xi , i = j;
1, i < j, vi adjacent to v j ;
−1, i > j, vi adjacent to v j ;
0, i �= j, vi not adjacent to v j .

In short, this matrix has the vertex labels along the diagonal, takes on the values of
A(G), the adjacency matrix of G above the diagonal and takes on the negatives of the
values of A(G) below the diagonal.

As an example of this more general situation, if (T, v0) is the rooted tree that
produces the tree expression τ in Fig. 1,

τ(T, v0) = 1 + 1

1
+ 1

1 + 1

1

+ 1

1 + 1

1

+ 1

1 + 1

1
+ 1

1 + 1

1

,

then

λ(T, v0) = x0 + 1

x1
+ 1

x2 + 1

x3

+ 1

x4 + 1

x5

+ 1

x6 + 1

x7
+ 1

x8 + 1

x9

,

and (suppressing the zero elements),
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B(T ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 1 1 1 1
−1 x1
−1 x2 1

−1 x3
−1 x4 1

−1 x5
−1 x6 1 1

−1 x7
−1 x8 1

−1 x9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We make some preliminary observations that will assist in the proof of our next
main result that generalizes the Hosoya and Gutman observation, linking λ(T, r) and
the determinant of B-matrices. Given a tree T , we observe that if we expand the
determinant of B(T ) by the usual signed permutation sum

det B(T ) =
∑

σ∈Sn

(−1)sgn(σ )
n∏

i=1

(B(T ))i,σ (i)

then an x j value occurs in a term if and only if σ( j) = j . Also, since T has no cycles
of length 3 or more, no permutation with a cycle of length 3 or more can make a
nonzero contribution to det B(T ). Thus, if B(T ) j,k is in any term

∏n
i=1(B(T ))i,σ (i)

that makes a nonzero contribution to det B(T ) then so is B(T )k, j .

We also note that if G − v has components C1, C2, . . . , Ck then there is a permuta-
tion matrix P such that P−1 B(G − v)P is a block diagonal matrix, each block being
of the form B(Ci ). This is tantamount to renumbering the vertices so that for each
1 ≤ i ≤ k −1, the vertices of component Ci have numbers below those of Ci+1. Thus,
det B(G − v) = ∏k

i=1 det B(Ci ).
We are now ready to prove our result.

Theorem 3 If (T, r) is a labeled tree then

λ(T, r) = det B(T )

det B(T − r)

where B(T − r) is the specific matrix obtained by removing the row and column cor-
responding to r . We adopt the convention that det B(T − r) = 1 to make sense of the
case when T is the graph with the single vertex r .

Proof The proof is by (strong) induction on the number of vertices n in T . The basis
step is when T has the single vertex r with label x . In this case, λ(T, r) = x and
B(T ) = [x] by definition. With the convention that det B(T −r) = 1, the basis step is
easily verified. For the inductive step, suppose the vertices are v0 = r, v1, . . . , vn−1.
Suppose further that vi is labeled xi and suppose r = v0 is adjacent to vertices
vi1 , vi2 , . . . , vik where vi is the root of component Ci of the graph T −r . If we expand
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det B(T ) along “row 0”, corresponding to r = v0, we obtain

det B(T ) = x0 det B(T − r) +
∑

j

det B(T − r − vi j ).

The second expression arises from each occurrence of a B(T )0,i j = 1. From our
preliminary observations, B(T )i j ,0 = −1 must also appear in the term. These two
terms form a transposition and so contribute a second factor of −1 to the product
forming this term in the determinant; the remaining factor is det B(T − r − vi j ).

We now divide each side of our formula for det B(T ) by det B(T − r), obtaining

det B(T )

det B(T − r)
= x0 +

∑

j

det B(T − r − vi j )

det B(T − r)
.

Finally, if C j is the component of T − r that contains vi j then by our preliminary
observations,

det B(T − r − vi j )

det B(T − r)
= det B(C j − vi j )

det B(C j )

= 1

λ(C j , vi j )

by the inductive hypothesis. Therefore,

det B(T )

det B(T − r)
= x0 +

∑

j

1

λ(C j , vi j )
= λ(T, r)

by the recursive definition of λ(T, r) and we are done. ��
We finish with the following result that links det B(G) to matchings in the more

general case when G is a graph with no even cycles.

Theorem 4 Let G be a graph with no even cycles and let P(G) = det B(G), treated
as a polynomial in the xi . Then the coefficient of xi1 xi2 · · · xik of P(G) enumerates
the perfect matchings of the graph G ′ induced by the vertices whose indices are not
in {i1, i2, . . . , ik}.
Proof Again, we analyze the determinant by means of the usual formula involving
permutations σ ∈ Sn :

P(G) =
∑

σ∈Sn

(−1)sgn(σ )
n∏

i=1

(B(G))i,σ (i). (6)

The only permutations that contribute to the desired coefficient are those that have
each of i1, i2, . . . , ik as their only fixed points. Let σ be such a permutation and sup-
pose that σ has a cycle of length at least 3. Let C = (a1, a2, . . . , aq) be the cycle
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of any length at least 3 with the lowest entry such that each (B(G))ai ,ai+1 along with
(B(G))aq ,a1 is either 1 or −1. Since G has no even cycles, q must be odd.

Since q is odd, the number of the values (B(G))ai ,ai+1 or (B(G))aq ,a1 that equal −1
must have the opposite parity of the number of values that equal 1. If we let σ ′ be the
permutation where C is reversed but otherwise σ ′(i) = σ(i), then we are interested
in the values (B(G))ai+1,ai along with (B(G))a1,aq . Here, the parities of the number
of −1 values and the number of 1 values are reversed. We conclude that the contri-
butions of σ and σ ′ to P(G) eliminate each other. Such permutations come in pairs
(thanks to the definition of C) and so the only permutations that can contribute to the
desired coefficient without being cancelled by another permutation are those that fix
i1, i2, . . . , ik and transpose all of the remaining entries in pairs. Each transposition
(a, b), a < b, contributes to the product in Eq. 1 one factor of −1 in (−1)sign(σ ), a
factor of 1 from (B(G))a,b, and a factor of −1 from (B(G))b,a . In summary, each
(B(G))i j ,i j = xi j and each transposition contributes two factors of −1 to the product,
and so the product (−1)sign(σ )

∏n
i=1(B(G))i,σ (i) = xi1 xi2 . . . xik . Finally, each trans-

position corresponds to an edge in G ′ and so σ corresponds to a perfect matching of
G ′, which yields the result. ��

We close by noting the following corollaries.

Corollary 2 Given a graph G with no even cycles (this includes trees), the
Hosoya index Z(G) is P(G)(1, 1, . . . , 1) and the number of perfect matchings is P(G)

(0, 0, . . . , 0).

Corollary 3 Given a graph G with no even cycles and a vertex v,

ζ(G, v) = P(G)(1, 1, . . . , 1)

P(G − v)(1, 1, . . . , 1)
.

For such graphs, this provides a polynomial-time formula for computing ζ(G, v).
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